Spectral Sequences II

Two Stripes

The next thing to address in McCleary is an apparent mistake on p. 9 of section 1.2. Here we again assume a first quadrant spectral sequence converging to a graded vector space H^*. This is mentioned at the beginning of the section, but it’s easy to forget that when a bold-faced and titled example (1.D) seems to be presenting a reset of assumptions, rather than building upon prior discussion. Furthermore, in this example, McCleary seems to be working again with the assumption from example 1.A that F^p+kH^p=0 for k>0. On the other hand, this can be seen as a consequence of the fact that our spectral sequence is limited to the first quadrant, provided the filtration is finite in the sense of Weibel’s Homological Algebra, p. 123 (F^mH^s=0 for some m). But then it would be unclear why McCleary took this as an additional assumption rather than as a consequence of prior assumptions in the first case. : /

The new part of this example is the assumption that E^{p,q}_2=0 unless q=0 or q=n, so all terms of the spectral sequence are to be found just in two horizontal stripes. In particular E_\infty^{p,q} is only possibly non-zero in these stripes, and since these correspond to filtration quotients, the filtration takes a special form.

First, we might look at the filtration on H^s where 0\leq s \leq n-1.  Note that the spectral sequence terms that give information about H^s are those along the diagonal line where p+q=s.  Since s\leq n-1, the only place where anything interesting might happen is when this line crosses the p-axis, i. e. when q=0. This forces p=s, so the only possible nonzero filtration quotient is

    \[E_\infty^{s,0}=F^sH^s/F^{s+1}H^s=F^sH^s=F^0H^s=H^s \]

working with the assumption that F^{s+1}H^s=0. So on the one hand, we get no interesting filtration of H^s for s<n, but on the other hand we can see exactly what it is from the spectral sequence limit.

Now we treat the case of H^{n+p}, where p\geq 0. I find this awkward notation again, preferring to reserve p for a pure arbitrary spectral sequence index, but since we are trying to address the mistake in this notation, we should keep it for now. The filtration of this vector space/cohomology is interesting when q=n and q=0, where the quotients are given by

    \[E^{p,n}_\infty=F^pH^{p+n}/F^{p+1}H^{p+n}\quad\text{and}\quad E^{p+n,0}_\infty=F^{p+n}H^{p+n}/0.\]

Every where else, successive quotients are 0, meaning the filtration looks like…

    \[0\sus F^{n+p}H^{n+p}= \dots =F^{p+1}H^{n+p} \sus F^pH^{n+p}=\dots=F^1H^{n+p}\sus H^0{n+p}\]

In the filtration on page 9, McCleary puts one of the (possibly) non-trivial quotients at F^nH^{n+p} instead of at F^pH^{n+p} where it should be.  That’s all I’m saying.

This situation is modeled on a spectral sequence for sphere bundles i.e. bundles where the fibers are spheres of a given dimension. The stripes coincide with the fact that a sphere \mathbb{S}^n has nontrivial cohomology only at H^n and H^0. This sort of computation is famous enough that it has a name: the Thom-Gysin sequence (or just Gysin sequence).

As a final remark on section 1.2, McCleary says that the sequence in example 1.C is the Gysin sequence. Example 1.C doesn’t exist, we mean example 1.D : )

Leave a Reply

Your email address will not be published.